\boldsymbol{N}-Fractional calculus for ordinary differential equations of \boldsymbol{n}-th order

Adel A. A. Bassim
Department of Mathematics, Faculty of Education- Loder
University of Abyan, Yemen

Abstract

There are many papers for application of fractional calculus and Shehu transform to fractional differential equations (see [5], [8], [10] and [11]). In this paper, we transform the ordinary differential equations of n-th order to fractional differential equations, then apply N -fractional calculus to get the solutions. Also, we get some special cases.

Key words: (N-fractional calculus, the non-homogeneous $n-t h$ ordinary differential equation, the homogeneous $n-t h$ order ordinary differential equation, fractional differential equation).

```
في هذا البحث اسـتخدمنا طريقة نيشـوموتو لحل المعادلات التفاضـلية العادية المتجانسـة و غبر المتجانسـة من
```



```
    نظر يات لنيشوموتو والهاشمي لمعادلات تفاضلية عادية متجانسة و غبر متجانسة من الرتبة الثنانية.
(الكلمات المفتاحية: (حسـب التفاضـل والتكامل الكسري لنيشيموتو، ومعادلة تفاضلية عادية غير متجانسـة من الرتبة النونية، ومعادلة
                                    تفاضلية عادية متجانسة من الرتبة النونية، ومعادلة تفاضلية كسرية).
```


1. Introduction:

K. Nishimoto defined the fractional calculus of order (U) for functions of single variable as the following (see [6]):

Definition:

Let $D=\left\{D_{-}, D_{+}\right\}, C=\left\{C_{-}, C_{+}\right\}$, where
C_{-}be a curve along the cut joining two points z and $-\infty+i \operatorname{Im}(z)$,
C_{+}be a curve along the cut joining two points z and $\infty+i \operatorname{Im}(z)$,
D_{-}be a domain surrounded by C_{-},
D_{+}be a domain surrounded by C_{+}.
(Here D contains the points over curves C).
Moreover, let $f=f(z)$ be a regular function in $D(z \in D)$,

$$
\begin{equation*}
f_{v}=_{C}(f)_{v}(z)=\frac{\Gamma(v+1)}{2 \pi i} \tag{1.1}
\end{equation*}
$$

$\int_{C} \frac{f(\varsigma)}{(\varsigma-z)^{v+1}} d \varsigma, \quad\left(v \notin Z^{-}\right)$
$(f)_{-m}=\lim _{v \rightarrow-m}(f)_{v} \quad\left(m \in Z^{+}\right)$,
where $\varsigma \neq z, \quad z \in C, v \in R, \Gamma$:Gamma function, $-\pi \leq \arg (\varsigma-z) \leq \pi$ for C_{-},
$0 \leq \arg (\varsigma-z) \leq 2 \pi$ for C_{+},
then $(f)_{v}$ is the fractional differintegration of arbitrary order V (derivatives of order U
for $U>0$, and integrals of order $-v$ for $U<0$), with respect to z , of the function f, if $\left|(f)_{v}\right|<\infty$.

Shih-Tong Tu solved ordinary and partial differential equations of n -th order by using N -fractional calculus (see [9] and [10]). In [3] and [4] Bassim used

Nishimoto's method to solving ordinary and partial differential equations of second, third, fourth, and fifth order. Nishimoto applied N -fractional calculus to ordinary and partial differential equations of second, third, fourth and fifth order (see [6] and [7]). For example, Nishimoto introduced the following results (see [6], Vol. 1, p. 154-158):

Result (1): If f_{α} exists and $f_{\alpha} \neq 0$, then the differential equation

$$
\begin{equation*}
\varphi_{2} \cdot z^{2}+\varphi_{1} \cdot 2 \cdot \alpha \cdot z+\varphi \cdot \alpha \cdot(\alpha-1)=f, \quad(z \neq 0) \tag{1.2}
\end{equation*}
$$

has a particular solution of the form

$$
\begin{equation*}
\varphi=\left(f_{-\alpha} \cdot z^{-2}\right)_{\alpha-2} \tag{1.3}
\end{equation*}
$$

where $\varphi=\varphi(z)$ and $\alpha, z \in C$.
Result (2): the differential equation

$$
\begin{equation*}
\varphi_{2} \cdot z^{2}+\varphi_{1} \cdot 2 \cdot \alpha \cdot z+\varphi \cdot \alpha \cdot(\alpha-1)=0, \quad(z \neq 0) \tag{1.4}
\end{equation*}
$$

has a solution of the form
$\varphi=\left(k \cdot z^{-2}\right)_{\alpha-2}$,
for $\alpha \notin Z^{-} \cup\{0\}$ and k is constant.
Result (3): If f_{α} exists and $f_{\alpha} \neq 0$, then the differential equation (1.2) has the solution
$\varphi=\left(f_{-\alpha} \cdot z^{-2}\right)_{\alpha-2}+\left(k \cdot z^{-2}\right)_{\alpha-2}$,
for $\alpha \notin Z^{-} \cup\{0\}$.
Also, Al-Hashmi, A. M. H. solved ordinary differential equations of second and fourth order by using N -fractional calculus (see [1] and [2]). For example, he got the following results (see [2]):

Result (4): If f_{α} exists and $f_{\alpha} \neq 0$, then the differential equation

$$
\begin{equation*}
\varphi_{2} \cdot\left(z^{2}-z\right)+\varphi_{1} \cdot(2 \cdot \alpha \cdot z-\alpha)+\varphi \cdot \alpha \cdot(\alpha-1)=f, \quad(z \neq 0,1) \tag{1.7}
\end{equation*}
$$

has a particular solution of the form
$\varphi=\left(f_{-\alpha} \cdot \frac{1}{\left(z^{2}-z\right)}\right)_{\alpha-2}$,
where $\varphi=\varphi(z)$ and $\alpha, z \in C$.
Result (5): the differential equation

$$
\begin{equation*}
\varphi_{2} \cdot\left(z^{2}-z\right)+\varphi_{1} \cdot(2 \cdot \alpha \cdot z-\alpha)+\varphi \cdot \alpha \cdot(\alpha-1)=0, \quad(z \neq 0,1) \tag{1.9}
\end{equation*}
$$

has a solution of the form
$\varphi=(k \cdot z+h)_{\alpha-2}$,
where k and h are constants.
The main object of this paper is to apply N -fractional calculus to ordinary differential equations of n-th order and get some special cases.

By using (1.1) we get the following Lemmas:
Lemma 1.: If k is constant, then

$$
\begin{equation*}
(k)_{v}=k \cdot(1)_{v}=0, \quad \text { if } \quad v \notin Z^{-} \cup\{0\} \tag{1.11}
\end{equation*}
$$

Lemma 2.: Let $u=u(z), y=y(z)$ be regular functions and if u_{v}, y_{v} exist, then

$$
\begin{equation*}
(a u+b y)_{v}=a(u)_{v}+b(y)_{v}, \text { where } a, b \text { are constants }(z, v \in C) . \tag{1.12}
\end{equation*}
$$

Lemma 3.: Let $f=f(z)$ be regular function, if $\left(f_{\mu}\right)_{\nu}$ and $\left(f_{v}\right)_{\mu}$ exist, then

$$
\begin{align*}
& \left(f_{\mu}(z)\right)_{v}=\frac{\Gamma(v+1)}{2 \pi i} \int_{c} \frac{f_{\mu}(\zeta)}{(\zeta-z)^{v+1}} d \zeta, \quad(z, v, \mu \in C) \\
& \left(f_{\mu}(z)\right)_{v}=\left(f_{v}(z)\right)_{\mu} \\
& \left(f_{\mu}(z)\right)_{v}=(f)_{v+\mu} . \tag{1.13}
\end{align*}
$$

Lemma 4.: Let $u=u(z), y=y(z)$ be regular functions and if are u_{α}, y_{α} exist, then

$$
\begin{equation*}
(u y)_{\alpha}=\sum_{n=0}^{\infty} \frac{\Gamma(\alpha+1)}{\Gamma(\alpha-n+1) \Gamma(n+1)}(y)_{\alpha-n}(u)_{n}, \quad(z, \alpha \in C) . \tag{1.14}
\end{equation*}
$$

2.N-fractional calculus to n-th order ordinary differential equations

In this section, we introduce and prove the below results, but we can not solve differential equations of natural order by using N -fractional calculus, so that we must change the differential equations of natural order to fractional order as the following:

Theorem (1): If f_{α} exists and $f_{\alpha} \neq 0$, then the non-homogeneous n-th order linear ordinary differential equation

$$
\begin{equation*}
\sum_{k=0}^{n} \varphi_{n-k} \cdot \frac{\Gamma(\alpha+1)}{\Gamma(\alpha-k+1) \cdot \Gamma(k+1)} \cdot \frac{d^{k}}{d z^{k}}\left(\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)=f, \quad\left(a_{1} \cdot z \neq 0\right) \tag{2.1}
\end{equation*}
$$

has a particular solution of the form

$$
\begin{equation*}
\varphi=w_{\alpha}=\left(f_{-\alpha} \cdot \frac{1}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}\right)_{\alpha-n} \tag{2.2}
\end{equation*}
$$

where $\varphi=\varphi(z), f=f(z), \quad z \in C$ and $a_{1}, a_{2}, a_{3}, \cdots, a_{n+1}$ are constants.

Proof theorem (1):

Put $\varphi_{n}=w_{\alpha+n}$, where $\left.\alpha \in\right] 0,1[$ and $w=w(z)$.

Substituting (2.3) into (2.1); we get
$\sum_{k=0}^{n} w_{\alpha+n-k} \cdot \frac{\Gamma(\alpha+1)}{\Gamma(\alpha-k+1) \cdot \Gamma(k+1)} \cdot \frac{d^{k}}{d z^{k}}\left(\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)=f$.
The equation (2.4) is fractional differential equation of order $n+\alpha$.
Now, by using (1.14), then (2.4) becomes
$\left(w_{n} \cdot \sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)_{\alpha}=f$,
By using (1.13); we get
$w_{n} \cdot \sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}=f_{-\alpha}$,
this is,
$w_{n}=\frac{f_{-\alpha}}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}$.
By taking the order $(\alpha-n)$ of both sides; we obtain
$w_{\alpha}=\left(\frac{f_{-\alpha}}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}\right)_{\alpha-n}$,
hence,
$\varphi=w_{\alpha}=\left(\frac{f_{-\alpha}}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}\right)_{\alpha-n}$.
as solution of the non-homogeneous n-th order linear ordinary differential equation (2.1). Here completes the proof of the theorem (1).

Inversely, we have
$\varphi=w_{\alpha}=\left(\frac{f_{-\alpha}}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}\right)_{\alpha-n}$.

Substituting (2.5) into the left hand side of (2.1); we get

$$
\text { L.H.S.(2.1) }=\sum_{k=0}^{n}\left(\left(\frac{f_{-\alpha}}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}\right)_{\alpha-n}\right)_{n-k} \cdot \frac{\Gamma(\alpha+1)}{\Gamma(\alpha-k+1) \cdot \Gamma(k+1)} \cdot \frac{d^{k}}{d z^{k}}\left(\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right),
$$

By using (1.13); we obtain
L. H. S. (2.1) $=\sum_{k=0}^{n}\left(\frac{f_{-\alpha}}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}\right)_{\alpha-k} \cdot \frac{\Gamma(\alpha+1)}{\Gamma(\alpha-k+1) \cdot \Gamma(k+1)} \cdot \frac{d^{k}}{d z^{k}}\left(\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)$.

Using (1.14), then (2.6) becomes
L. H. S. (2.1) $=\left(\frac{f_{-\alpha}}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}} \cdot \sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)_{\alpha}$,
L. H. S. (2.1) $=f=$ R. H. S. (2.1).

Theorem (2): The homogeneous nth order linear ordinary differential equation
$\sum_{k=0}^{n} \varphi_{n-k} \cdot \frac{\Gamma(\alpha+1)}{\Gamma(\alpha-k+1) \cdot \Gamma(k+1)} \cdot \frac{d^{k}}{d z^{k}}\left(\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)=0, \quad(a \cdot z \neq 0)$
has a solution of the form
$\varphi=w_{\alpha}=\left(\frac{m}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}\right)_{\alpha-n}$,
for $\alpha \notin Z^{-} \cup\{0\}, \varphi=\varphi(z), z \in C$ and $m, a_{1}, a_{2}, a_{3}, \cdots, a_{n+1}$ are constants.

Proof theorem (2):

Here, we prove to the homogeneous nth order linear ordinary differential equation (2.7) its solution is (2.8) as the following:

Put $\varphi_{n}=w_{\alpha+n}$ in (2.7), we get:

$$
\begin{equation*}
\sum_{k=0}^{n} w_{\alpha+n-k} \cdot \frac{\Gamma(\alpha+1)}{\Gamma(\alpha-k+1) \cdot \Gamma(k+1)} \cdot \frac{d^{k}}{d z^{k}}\left(\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)=0, \tag{2.9}
\end{equation*}
$$

Now, by using (1.14), then (2.9) becomes
$\left(w_{n} \cdot \sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)_{\alpha}=0$.
By applying (1.13); we get:
$\left(\left(w_{n} \cdot \sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)_{1}\right)_{\alpha-1}=0$,
and
$\left(w_{n+1} \cdot \sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}+w_{n} \cdot \sum_{r=0}^{n} a_{r+1} \cdot(n-r) \cdot z^{n-r-1}\right)_{\alpha-1}=0$,
Now, by using (1.14) and (1.11), then (2.10) becomes
$w_{n+1} \cdot \sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}+w_{n} \cdot \sum_{r=0}^{n} a_{r+1} \cdot(n-r) \cdot z^{n-r-1}=0$,
and
$w_{n+1} \cdot \sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}=-w_{n} \cdot \sum_{r=0}^{n} a_{r+1} \cdot(n-r) \cdot z^{n-r-1}$,
hence
$\frac{w_{n+1}}{w_{n}}=-\frac{\sum_{r=0}^{n} a_{r+1} \cdot(n-r) \cdot z^{n-r-1}}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}$,
integrating both sides of (2.11), we get:
$\log \left(w_{n}\right)=-\log \left(\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)+\log (m)$,
this implies that
$w_{n}=\frac{m}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}$,
that is
$w=\left(\frac{m}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}\right)_{-n}$,
hence
$\varphi=w_{\alpha}=\left(\frac{m}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}\right)_{\alpha-n}$.
which completes the proof of the theorem (2).
Inversely, we have
$\varphi=w_{\alpha}=\left(\frac{m}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}\right)_{\alpha-n}$,
Substituting (2.12) into the left hand side of (2.7); we get
L. H. S.(2.7) $=\sum_{k=0}^{n}\left(\left(\frac{m}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}\right)_{\alpha-n}\right)_{n-k} \frac{\Gamma(\alpha+1)}{\Gamma(\alpha-k+1) \cdot \Gamma(k+1)} \cdot \frac{d^{k}}{d z^{k}}\left(\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)$,

By using (1.13); we obtain
L. H. S. (2.7) $=\sum_{k=0}^{n}\left(\frac{m}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}\right)_{\alpha-k} \cdot \frac{\Gamma(\alpha+1)}{\Gamma(\alpha-k+1) \cdot \Gamma(k+1)} \cdot \frac{d^{k}}{d z^{k}}\left(\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)$,

Using (1.14), then (2.13) becomes
L. H. S. (2.7) $=\left(\frac{m}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}} \cdot \sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)_{\alpha}$,

Now, by using (1.11), then
L. H. S. (2.7) $=0=$ R. H. S. (2.7)

Theorem (3): If f_{α} exists and $f_{\alpha} \neq 0$, then the differential equation (2.1) has the solution
$\varphi=w_{\alpha}=\left(\frac{f_{-\alpha}}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}\right)_{\alpha-n}+\left(\frac{m}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}\right)_{\alpha-n}$,
for $\alpha \notin Z^{-} \cup\{0\}$.
Proof theorem (3):
Put $\varphi_{n}=w_{\alpha+n}$,
Substituting (2.15) into (2.1); we get
$\sum_{k=0}^{n} w_{\alpha+n-k} \cdot \frac{\Gamma(\alpha+1)}{\Gamma(\alpha-k+1) \cdot \Gamma(k+1)} \cdot \frac{d^{k}}{d z^{k}}\left(\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)=f$.
Now, by using (1.14) and (1.11) for $\alpha \notin Z^{-} \cup\{0\}$, then (2.16) becomes
$\left(w_{n} \cdot \sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)_{\alpha}=f+(m)_{\alpha}$,
By using (1.12) and (1.13); we get
$w_{n} \cdot \sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}=f_{-\alpha}+m$,
this is,

$$
w_{n}=\frac{f_{-\alpha}}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}+\frac{m}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}
$$

By taking the order $(\alpha-n)$ of both sides; we obtain
$w_{\alpha}=\left(\frac{f_{-\alpha}}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}+\frac{m}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}\right)_{\alpha-n}$
hence,
$\varphi=w_{\alpha}=\left(\frac{f_{-\alpha}}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}\right)_{\alpha-n}+\left(\frac{m}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}\right)$.
which completes the proof of the theorem (3).
Inversely, we have
Substituting (2.17) in the left hand side of (2.1); we get:
L. H. S. (2.1) =
$\sum_{k=0}^{n}\left(\left(\frac{f_{-\alpha}}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}\right)_{\alpha-n}+\left(\frac{m}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}\right)_{\alpha-n}\right)_{n-k} \cdot \frac{\Gamma(\alpha+1)}{\Gamma(\alpha-k+1) \cdot \Gamma(k+1)} \cdot \frac{d^{k}}{d z^{k}}\left(\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)$, By using
(1.12); we obtain
L.H.S.(2.1) $=\sum_{k=0}^{n}\left(\left(\frac{f_{-\alpha}+m}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}\right)_{\alpha-n} \cdot \frac{\Gamma(\alpha+1)}{\Gamma(\alpha-k+1) \cdot \Gamma(k+1)} \cdot \frac{d^{k}}{d z^{k}}\left(\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)\right.$,

By using (1.13); we obtain
L. H. S. (2.1) $=\sum_{k=0}^{n}\left(\frac{f_{-\alpha}+m}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}\right)_{\alpha-k} \cdot \frac{\Gamma(\alpha+1)}{\Gamma(\alpha-k+1) \cdot \Gamma(k+1)} \cdot \frac{d^{k}}{d z^{k}}\left(\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)$,

Using (1.14), then (2.18) becomes
L. H. S. (2.1) $=\left(\frac{f_{-\alpha}+m}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}} \cdot \sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)_{\alpha}$,
L. H. S. (2.1) $=\left(f_{-\alpha}+m\right)_{\alpha}$,
L. H. S. (2.1) $=f=$ R. H. S. (2.1)

Theorem (4): The homogeneous nth order linear ordinary differential equation

$$
\begin{equation*}
\sum_{k=0}^{n} \varphi_{n-k} \cdot \frac{\Gamma(\alpha+1)}{\Gamma(\alpha-k+1) \cdot \Gamma(k+1)} \cdot \frac{d^{k}}{d z^{k}}\left(\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)=0, \quad(a \cdot z \neq 0) \tag{2.19}
\end{equation*}
$$

has other solution of the form
$\varphi=w_{\alpha}=\left(\sum_{r=1}^{n} b_{r} \cdot \frac{z^{n-r}}{(n-r)!}\right)_{\alpha}$,
where $\varphi=\varphi(z), z \in C$ and $b_{1}, b_{2}, b_{3}, \cdots, b_{n}$ are constants.

Proof theorem (4):

Now we will prove theorem (4) as the following:
Put $\varphi_{n}=w_{\alpha+n}$ in (2.19) we get:
$\sum_{k=0}^{n} w_{\alpha+n-k} \cdot \frac{\Gamma(\alpha+1)}{\Gamma(\alpha-k+1) \cdot \Gamma(k+1)} \cdot \frac{d^{k}}{d z^{k}}\left(\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)=0$,
Now, by using (1.14), then (2.21) becomes
$\left(w_{n} \cdot \sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)_{\alpha}=0$,
and,
$w_{n} \cdot \sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}=0$,
this implies that,
$w_{n}=0$,
then,
$w_{n-1}=b_{1}$,
$w_{n-2}=b_{1} z+b_{2}$,
$w_{n-3}=b_{1} \frac{z^{2}}{2!}+b_{2} z+b_{3}$,
$w_{n-4}=b_{1} \frac{z^{3}}{3!}+b_{2} \frac{z^{2}}{2!}+b_{3} z+b_{4}$,
$w_{n-n}=b_{1} \frac{z^{n-1}}{(n-1)!}+b_{2} \frac{z^{n-2}}{(n-2)!}+b_{3} \frac{z^{n-3}}{(n-3)!}+\cdots \cdots+b_{n}$,
hence,
$w=\sum_{r=1}^{n} b_{r} \frac{z^{n-r}}{(n-r)!}$.
By taking the order (α) to both sides of (2.22); we get
$\varphi=w_{\alpha}=\left(\sum_{r=1}^{n} b_{r} \frac{z^{n-r}}{(n-r)!}\right)_{\alpha}$.
which completes the proof of theorem (4).
Inversely, we have
$\varphi=w_{\alpha}=\left(\sum_{r=1}^{n} b_{r} \frac{z^{n-r}}{(n-r)!}\right)_{\alpha}$,
Substituting (2.23) into the left hand side of (2.19); we get
L. H. S.(2.19) $=\sum_{k=0}^{n}\left(\left(\sum_{r=1}^{n} b_{r} \frac{z^{n-r}}{(n-r)!}\right)_{\alpha}\right)_{n-k} \cdot \frac{\Gamma(\alpha+1)}{\Gamma(\alpha-k+1) \cdot \Gamma(k+1)} \cdot \frac{d^{k}}{d z^{k}}\left(\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)$,

By using (1.13); we obtain
L. H. S.(2.19) $=\sum_{k=0}^{n}\left(\left(\sum_{r=1}^{n} b_{r} \frac{z^{n-r}}{(n-r)!}\right)_{n}\right)_{\alpha-k} \cdot \frac{\Gamma(\alpha+1)}{\Gamma(\alpha-k+1) \cdot \Gamma(k+1)} \cdot \frac{d^{k}}{d z^{k}}\left(\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)$,

Using (1.14), then (2.24) becomes
L. H. S. $(2.19)=\left(\left(\sum_{r=1}^{n} b_{r} \frac{z^{n-r}}{(n-r)!}\right)_{n} \cdot \sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)_{\alpha}$.
L. H. S. (2.19) $=0$,
since $\left(z^{n}\right)_{k}=0$, if $k>n$ and $n, k \in Z^{+}$.
hence,
L. H. S. $(2.19)=0=$ R. H. S. (2.19)

Theorem (5): If f_{α} exists and $f_{\alpha} \neq 0$, then the differential equation (2.1) has the solution
$\varphi=w_{\alpha}=\left(\frac{f_{-\alpha}}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}\right)_{\alpha-n}+\left(\sum_{r=1}^{n} b_{r} \cdot \frac{z^{n-r}}{(n-r)!}\right)_{\alpha}$,

Proof theorem (5):

Put $\varphi_{n}=w_{\alpha+n}$,
Substituting (2.26) into (2.1); we get
$\sum_{k=0}^{n} w_{\alpha+n-k} \cdot \frac{\Gamma(\alpha+1)}{\Gamma(\alpha-k+1) \cdot \Gamma(k+1)} \cdot \frac{d^{k}}{d z^{k}}\left(\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)=f$.

Now, by using (1.14), then (2.27) becomes
$\left(w_{n} \cdot \sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)_{\alpha}=f$,
By using (1.13); we get
$w_{n} \cdot \sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}=f_{-\alpha}$,
this is,
$w_{n}=\frac{f_{-\alpha}}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}+\left(\sum_{r=1}^{n} b_{r} \cdot \frac{z^{n-r}}{(n-r)!}\right)_{n}$
By taking the order $(\alpha-n)$ of both sides; we obtain
$w_{\alpha}=\left(\frac{f_{-\alpha}}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}+\left(\sum_{r=1}^{n} b_{r} \cdot \frac{z^{n-r}}{(n-r)!}\right)_{n}\right)_{\alpha-n}$
hence,
$\varphi=w_{\alpha}=\left(\frac{f_{-\alpha}}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}\right)_{\alpha-n}+\left(\sum_{r=1}^{n} b_{r} \cdot \frac{z^{n-r}}{(n-r)!}\right)$.
which completes the proof.
Inversely, we have
Substituting (2.28) in the left hand side of (2.1); we get:
L. H. S. (2.1) =
$\sum_{k=0}^{n}\left(\left(\frac{f_{-\alpha}}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}\right)_{\alpha-n}+\left(\sum_{r=1}^{n} b_{r} \cdot \frac{z^{n-r}}{(n-r)!}\right)_{\alpha}\right)_{n-k} \cdot \frac{\Gamma(\alpha+1)}{\Gamma(\alpha-k+1) \cdot \Gamma(k+1)} \cdot \frac{d^{k}}{d z^{k}}\left(\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)$,
(2.29)

By using (1.12) and (1.13), then (2.29) becomes
L. H. S. $(2.1)=$
$\sum_{k=0}^{n}\left(\left(\frac{f_{-\alpha}}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}\right)+\left(\sum_{r=1}^{n} b_{r} \cdot \frac{z^{n-r}}{(n-r)!}\right)_{n}\right)_{\alpha-k} \cdot \frac{\Gamma(\alpha+1)}{\Gamma(\alpha-k+1) \cdot \Gamma(k+1)} \cdot \frac{d^{k}}{d z^{k}}\left(\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)$, L. H. S. (2.1) $=$
$\sum_{k=0}^{n}\left(\frac{f_{-\alpha}}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}}\right)_{\alpha-k} \cdot \frac{\Gamma(\alpha+1)}{\Gamma(\alpha-k+1) \cdot \Gamma(k+1)} \cdot \frac{d^{k}}{d z^{k}}\left(\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)$,

Using (1.14), then (2.30) becomes
L. H. S. (2.1) $=\left(\frac{f_{-\alpha}}{\sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}} \cdot \sum_{r=0}^{n} a_{r+1} \cdot z^{n-r}\right)_{\alpha}$,
L. H. S. (2.1) $=f=$ R. H. S. (2.1)

3. Conclusions:

Finally, we show some special cases from this work as the following:
(i) Put $n=2, a_{1}=1$ and $a_{i}=0$ for $\forall i \in\{2,3,4,5, \ldots \ldots, n+1\}$ in theorems (1), (2) and (3) respectively, we get the results (1), (2) and (3) respectively.
(ii) Put $n=2, a_{1}=1, a_{2}=-1$ and $a_{i}=0$ for $\forall i \in\{3,4,5, \ldots \ldots, n+1\}$ in theorems
(1) and (4) respectively, we get the results (4) and (5) respectively.

References:

1- Al- Hashmi, A. M. H. and Bassim, A. A. A. (2006). An application of N-Fractional calculus to a fourth order linear ordinary differential equation. University of Aden (Yemen) Journal of Natural and Applied Sciences, Vol. 10 No. 3, 517-521.

2- Al- Hashmi, A. M. H. (2007). Solution of a certain second order linear differential equation of Fuch's type using N-Fractional calculus. University of Aden (Yemen) Journal of Natural and Applied Sciences, Vol. 11 No. 1- April 2007, 119-124.

3- Bassim, A. A. A. (2008). Applications of N-Fractional calculus to solve certain types of differential equations. M.SC. Thesis, University of Aden, (Yemen).

4- Bassim, A. A. A. (2017). Applications of N-Fractional calculus to solve ordinary and partial differential equations of the fourth and fifth order. Ph. D. Thesis, University of Aden (Yemen).

5- Khalouta, A. and Kadem, A. (2019). A new method to solve fractional differential equations: inverse fractional Shehu transform method. J. Appl. Appl. Math., Vol. 14, pp. 926-941.

6- Nishimoto, K. Fractional calculus Vol. 1 (1984). Vol. 2 (1987), Vol. 3 (1989), Vol. 4 (1991), Vol. 5 (1996), Descartes Press Co. Koriyama, Japan.

7- Nishimoto, K. and Shih-Tong Tu (1992). Fractional calculus method to a generalized linear second order (non-homogeneous and homogeneous) ordinary differential equation of Fuchs type, J. Coll. Engng, Nihon Univ, B-33. 27-52.

8- Qureshi, S. and Kumar, P. (2019). Using Shehu integral transform to solve fractional order caputo type initial value problems. Journal of Applied Mathematics and Computational Mechanics 2019, 18(2), $75-83$.

9- Shih-Tong TU and Ding-Kuo Chyan. Nov. (1996). Solutions of some n-th order ordinary and partial differential equations by means of fractional calculus. J. Frac. Calc. Vol. 10, 51-65.

10- Shih-Tong Tu, Shy-Der Lin and Yu-Tan Huang (2001). Solutions of a certain class of fractional differintegral equations. Journal of Applied Mathematics Letters 14 (2001), 223 229.

11- Tsai-Ming Hsieh, Shy-Der Lin and H. M. Srivastava (2003). Some relationships between certain families of ordinary and fractional differential equations. International Journal Computers and Mathematics with Applications 46 (2003), 1483 - 1492.

